vector迭代器的实现
大约 3 分钟
vector迭代器的实现
泛型算法:给所有容器都可以使用,参数接受的都是容器的迭代器。
//容器的空间配置器
template <typename T>
struct Allocator
{
T* allocate(size_t size)//只负责内存开辟
{
return (T*)malloc(sizeof(T) * size);
}
void deallocate(void *p)//只负责内存释放
{
free(p);
}
void construct(T *p, const T &val)//已经开辟好的内存上,负责对象构造
{
new (p) T(val);//定位new,指定内存上构造val,T(val)拷贝构造
}
void destroy(T *p)//只负责对象析构
{
p->~T();//~T()代表了T类型的析构函数
}
};
template <typename T, typename Alloc = Allocator<T>>
class vector//向量容器
{
public:
vector(int size = 10)//构造
{
//_first = new T[size];
_first = _allocator.allocate(size);
_last = _first;
_end = _first + size;
}
~vector()//析构
{
//delete[]_first;
for (T *p=_first; p!=_last; ++p)
{
_allocator.destroy(p);//把_first指针指向的数组的有效元素析构
}
_allocator.deallocate(_first);//释放堆上的数组内存
_first = _last = _end = nullptr;
}
vector(const vector<T> &rhs)//拷贝构造
{
int size = rhs._end - rhs._first;//空间大小
//_first = new T[size];
_first = _allocator.allocate(size);
int len = rhs._last - rhs._first;//有效元素
for (int i=0; i<len; ++i)
{
//_first[i] = rhs._first[i];
_allocator.construct(_first+i, rhs._first[i]);
}
_last = _first + len;
_end = _first + size;
}
vector<T>& operator=(const vector<T> &rhs)//赋值运算符重载
{
if (this == &rhs)
{
return *this;
}
//delete[]_first;
for (T *p=_first; p!=_last; ++p)
{
_allocator.destory(p);//把_first指针指向的数组的有效元素析构
}
_allocator.deallocate(_first);//释放堆上的数组内存
int size = rhs._end - rhs._first;//空间大小
_first = _allocator.allocate(size);
int len = rhs._last - rhs._first;//有效元素
for (int i=0; i<len; ++i)
{
_allocator.construct(_first+i, rhs._first[i]);
}
_last = _first + len;
_end = _first + size;
return *this;
}
void push_back(const T &val)//尾插
{
if (full())
{
expand();
}
//*_last++ = val;
_allocator.construct(_last, val);//_last指针指向的内存构造一个值为val的对象
_last++;
}
void pop_back()//尾删
{
if (empty()) return;
//--_last;
//不仅要把_last指针--,还需要析构删除的元素
--_last;
_allocator.destroy(_last);
}
T back()const//返回容器末尾元素值
{
return *(_last - 1);
}
bool full()const
{
return _last == _end;
}
bool empty()const
{
return _first == _last;
}
int size()const//返回容器中元素个数
{
return _last - _first;
}
T& operator[](int index)
{
if (index < 0 || index >= size())
{
throw "OutOfRangeException";
}
return _first[index];
}
//迭代器一般实现成容器的嵌套类型
class iterator
{
public:
iterator(T *ptr = nullptr)
:_ptr(ptr){}
bool operator!=(const iterator &it)const
{
return _ptr != it._ptr;
}
void operator++()
{
_ptr++;
}
T& operator*()
{
return *_ptr;
}
const T& operator*()const
{
return *_ptr;
}
private:
T *_ptr;
};
iterator begin()
{
return iterator(_first);
}
iterator end()
{
return iterator(_last);
}
private:
T *_first;//起始数组位置
T *_last;//指向最后一个有效元素后继位置
T *_end;//指向数组空间的后继位置
Alloc _allocator;//定义容器的空间配置器对象
void expand()//扩容
{
int size = _end - _first;
//T *ptmp = new T[2*size];
T *ptmp = _allocator.allocate(2*size);
for (int i=0; i<size; ++i)
{
_allocator.construct(ptmp+i, _first[i]);
//ptmp[i] = _first[i];
}
//delete[]_first;
for (T *p=_first; p!=_last; ++p)
{
_allocator.destroy(p);
}
_allocator.deallocate(_first);
_first = ptmp;
_last = _first + size;
_end = _first + 2*size;
}
};
int main()
{
vector<int> vec;
for (int i=0; i<20; ++i)
{
vec.push_back(rand()%100);
}
int size = vec.size();//[]重载针对vector有意义
for (int i=0; i<size; ++i)
{
cout << vec[i] << " ";//底层是数组,O(1)
}
cout << endl;
vector<int>::iterator it = vec.begin();
//auto it = vec.begin();
for (; it!=vec.end(); ++it)
{
cout << *it << " ";
}
cout << endl;
for(int val : vec)//底层还是通过容器的迭代器来实现遍历的
{
cout << val << " ";
}
cout << endl;
return 0;
}